Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Braz. j. microbiol ; 46(2): 455-464, Apr-Jun/2015. tab, graf
Article in English | LILACS | ID: lil-749744

ABSTRACT

Biomineralization is a known natural phenomenon associated with a wide range of bacterial species. Bacterial-induced calcium carbonate precipitation by marine isolates was investigated in this study. Three genera of ureolytic bacteria, Sporosarcina sp., Bacillus sp. and Brevundimonas sp. were observed to precipitate calcium carbonate minerals. Of these species, Sporosarcina sp. dominated the cultured isolates. B. lentus CP28 generated higher urease activity and facilitated more efficient precipitation of calcium carbonate at 3.24 ± 0.25 × 10−4 mg/cell. X-ray diffraction indicated that the dominant calcium carbonate phase was calcite. Scanning electron microscopy showed that morphologies of the minerals were dominated by cubic, rhombic and polygonal plate-like crystals. The dynamic process of microbial calcium carbonate precipitation revealed that B. lentus CP28 precipitated calcite crystals through the enzymatic hydrolysis of urea, and that when ammonium ion concentrations reached 746 mM and the pH reached 9.6, that favored calcite precipitation at a higher level of 96 mg/L. The results of this research provide evidence that a variety of marine bacteria can induce calcium carbonate precipitation, and may influence the marine carbonate cycle in natural environments.


Subject(s)
Bacillus/isolation & purification , Calcium Carbonate/metabolism , Caulobacteraceae/isolation & purification , Geologic Sediments/microbiology , Sporosarcina/isolation & purification , Ammonium Compounds/metabolism , Bacillus/classification , Bacillus/genetics , Bacillus/metabolism , Cluster Analysis , Caulobacteraceae/classification , Caulobacteraceae/genetics , Caulobacteraceae/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Molecular Sequence Data , Phylogeny , /genetics , Sequence Analysis, DNA , Sporosarcina/classification , Sporosarcina/genetics , Sporosarcina/metabolism , Urea/metabolism , X-Ray Diffraction
2.
Braz. j. microbiol ; 44(4): 1001-1007, Oct.-Dec. 2013. ilus, tab
Article in English | LILACS | ID: lil-705287

ABSTRACT

Microbiologically induced deterioration (MID) causes corrosion of concrete by producing acids (including organic and inorganic acids) that degrade concrete components and thus compromise the integrity of sewer pipelines and other structures, creating significant problems worldwide. Understanding of the fundamental corrosion process and the causal agents will help us develop an appropriate strategy to minimize the costs in repairs. This review presents how microorganisms induce the deterioration of concrete, including the organisms involved and their colonization and succession on concrete, the microbial deterioration mechanism, the approaches of studying MID and safeguards against concrete biodeterioration. In addition, the uninvestigated research area of MID is also proposed.


Subject(s)
Corrosion , Construction Materials/microbiology , Environmental Microbiology , Acids/metabolism
3.
Biosci. j. (Online) ; 29(4): 1000-1006, july/aug. 2013. ilus, tab
Article in English | LILACS | ID: biblio-946439

ABSTRACT

The conversion of waste cooking oil into riboflavin by Ashbya gossypii was investigated in this paper. The effect of initial pH and the original volume of added waste cooking oil in the medium were evaluated to optimize the fermentation efficiency. The results show that when the initial pH was adjusted to 6.5 and 40 g/L waste cooking oil was added in the medium, no residual waste cooking oil was observed and the riboflavin yield reached 4.78 g/L. During the fermentation process, pH, biomass, free amino nitrogen and reduced sugar were dynamically monitored to evaluate the efficient utilization of waste cooking oil for riboflavin yield. The results show that when pH was kept in the range of 6.5-6.8 during the fermentation process, the levels of free amino nitrogen and reduced sugar could be used more efficiently and the riboflavin yield increased to 6.76 g/L .


A conversão microbiana de óleo de cozinha recolhido em riboflavina por Ashbya gossypii foi investigada nesse estudo. O efeito inicial do pH e o volume original de óleo de cozinha recolhido foram avaliados para otimizar a eficiência de fermentação. Os resultados mostraram que quando o pH inicial foi ajustado para 6.5 e 0g/l de óleo de cozinha adicionado ao meio, nenhum óleo residual foi observado e a riboflavina pura atingiu 4.78g/L. Durante o processo de fermentação, pH, biomassa, amino nitrogênio livre e açúcar reduzido foram monitorados dinamicamente para avaliar a utilização eficiente do óleo de cozinha recolhido por riboflavina. Os resultados mostram que quando o pH é mantido numa amplitude de 6.5-6-8 durante o processo de fermentação, os níveis de amino nitrogênio livres e açúcar reduzido podem ser usados mais eficientemente e a riboflavina pura chega a 6.76 g/L.


Subject(s)
Riboflavin , Plant Oils , Environmental Pollution
4.
Braz. j. microbiol ; 43(2): 441-448, Apr.-June 2012. graf, tab
Article in English | LILACS | ID: lil-644457

ABSTRACT

The use of the filamentous fungus, Ashbya gossypii, to improve riboflavin production at an industrial scale is described in this paper. A riboflavin overproducing strain was isolated by ultraviolet irradiation. Ten minutes after spore suspensions of A. gossypii were irradiated by ultraviolet light, a survival rate of 5.5% spores was observed, with 10% of the surviving spores giving rise to riboflavin-overproducing mutants. At this time point, a stable mutant of the wild strain was isolated. Riboflavin production of the mutant was two fold higher than that of the wild strain in flask culture. When the mutant was growing on the optimized medium, maximum riboflavin production could reach 6.38 g/l. It has even greater promise to increase its riboflavin production through dynamic analysis of its growth phase parameters, and riboflavin production could reach 8.12 g/l with pH was adjusted to the range of 6.0-7.0 using KH2PO4 in the later growth phase. This mutant has the potential to be used for industrial scale riboflavin production.


Subject(s)
Spores, Fungal/isolation & purification , Fungi/genetics , Fungi/isolation & purification , Riboflavin/isolation & purification , Growth , Methods , Process Optimization , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL